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Eckart’s (1952) second-order, self-adjoint partial differential equation for the free- 
surface displacement of monochromatic gravity waves in water of variable depth h 
is derived from a variational formulation by approximating the vertical variation of 
the velocity potential in the average Lagrangian by that for deep-water waves. It 
is compared with the ‘mild-slope equation’, which also is second order and self- 
adjoint and may be obtained by approximating the vertical variation in the average 
Lagrangian by that for uniform, finite depth. The errors in these approximations 
vanish for either Kh 4 0 or Kh f 00 ( K  = w 2 / g ) .  Both approximations are applied to 
slowly modulated wavetrains, following Whitham’s (1974) formulation for uniform 
depth. Both conserve wave action ; the mild-slope approximation conserves wave 
energy, but Eckart’s approximation does not (except for uniform depth). The two 
approximations are compared through the calculation of reflection from a gently 
sloping beach and of edge-wave eigenvalues for a uniform slope (not necessarily 
small). Eckart’s approximation is inferior to the mild-slope approximation for the 
amplitude in the reflection problem, but i t  is superior in the edge-wave problem, for 
which it provides an analytical approximation that is exact for the dominant mode 
and in error by less than 1.6% for all higher modes within the range of admissible 
slopes. In contrast, the mild-slope approximation requires numerical integration 
(Smith & Sprinks 1975) and differs significantly from the exact result for the 
dominant mode for large slopes. 

1. Introduction 
Some forty years ago, Carl Eckart (1951, 1952) proposed the approximation 

V*(HVZ)+K2HZ = 0, (1 .1)  

where (1.2u-c) 

for the governance of linear gravity waves of free-surface displacement 
C;= Z(x)sinwt (an arbitrary phase constant may be added to wt) in water of 
variable depth h(x) .  It may be compared with the ‘mild-slope equation’ (Smith & 
Sprinks 1975), hereinafter the MSE, 

V.(XVZ)+k2ZZ = 0, (1.3) 

where (1.4u, b)  

The MSE is exact for uniform depth, but it requires the inversion of ( 1 . 4 b )  a t  each 

X = &k-’ tanh kh+ h sech2 kh), k tanh kh = K .  
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step in the numerical integration for variable depth. Both (1.1) and (1.3) reduce to  
Lamb’s (1932) shallow-water equation, 

V * ( h V Z ) + K Z  = 0 (1.5) 

(1.6) 

in the limit Kh $0  or to  the Helmholtz equation 

v2z + K 2 z  = 0 

in the limit Kht 00, and both are second order and self-adjoint. I n  contrast, the 
partial-differential equation in the exact formulation (exuct as used herein refers to 
the exact linear formulation) for variable depth (Miles 1985), 

where ~2 = -(a;+a;) (1.8) 
operates only on Z (whereas V operates on both h and Z), is of transcendental order 
and is not self-adjoint. 

Eckart (1952) derived (1 . l )  by first transforming the exact boundary-value 
problem to an integral equation for Z and then discarding a presumably small (and 
intractable) integral ‘without examining the justification of this approximation ’. 
He showed that the dispersion relation implied by (1 .1)  approximates the exact 
dispersion relation for uniform depth within 4% for 0 < Kh <CO and that (1 .1)  
provides a description of wave reflection from a beach of uniform slope without the 
invocation of matched asymptotic expansions (cf. Friedrichs 1948) ; however, in his 
1951 lecture notes he obtained a rather unsatisfactory approximation to the group 
velocity (see below), and this may have discouraged him from the further 
development of his approximation. I n  fact, the direct calculation of cg = aw/ak 
from Eckart’s dispersion relation k = K ( o ,  h )  (1.2b) yields an approximation to 
cg/cp (cp = w / k  is the phase velocity) that is within 1 % of the exact result for 
0 < Kh <a. 

Smith & Sprinks (1975) compare Eckart’s equation with the MSE by comparing 
(in their figure 1) graphs of K% and k2%/K us. Kh with those of KH and p H / K  and 
infer from this comparison that the MSE is superior to (1.1) for variable depth. A 
physically more significant comparison is between 

K H  = $(I -e-4Kh ); (1.9) 
and k X  = $(tanh kh+kh sech2 kh),  Kh = kh tanh kh (1.10u, b )  

(kh is a parametric variable in ( l . l O ) ) ,  to which the wave energy is inversely 
proportional in the geometrical-optics approximation, and between K/K and 
k/K us. Kh. As already noted, K and k differ by less than 4% over 0 < Kh < CO, but 
K H  and k X  differ by as much as 17 %, even though both have the correct limiting 
values, (Kh)f and i, respectively, for Kh $ 0 and Kh 00. This suggests that Eckart’s 
equation may be satisfactory (and more convenient than the MSE if o is prescribed) 
for the prediction of eigenvalues but inferior to  the MSE for the prediction of 
amplitudes. 

My aims in the present development are to derive (1.1)-(1.5) from an average- 
Lagrangian formulation, to  elucidate the deficiencies of Eckart’s equation in its 
description of energy propagation, and to compare its predictions in specific 
examples with those of the MSE. Starting (in $2) from the action integral, which is 
proportional to the average Lagrangian for harmonic motion, I approximate the 
vertical variation of the velocity potential by that for deep water. This single 
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approximation (in addition to those implicit in the linearization) yields an average 
Lagrangian that implies Eckart’s equation (1.1).  The corresponding approximation 
of the vertical variation by that for finite, uniform depth yields an average 
Lagrangian that implies the MSE (1.3), while the neglect of the vertical variation in 
the Lagrangian implies Lamb’s equation (1.5). 

It is worth emphasizing that the introduction of a particular approximation in the 
Lagrangian almost always leads to superior results vis-ic-vis the introduction of that 
same approximation in the equations of motion, in part because the error in the 
Euler-Lagrange equations derived from the variational principle for the Lagrangian 
is of the order of the square of the error in the trial function, and, even more 
importantly, because consistent approximations to the symmetries (e.g. conservation 
of energy) of the exact equations are preserved by their variational counterparts (see 
Salmon 1988). These advantages become even more significant for nonlinear wave 
motion. 

In $3, I consider a wavetrain for which the amplitude a, the wavenumber k, and 
the frequency w are slowly varying (compared with the carrier scales l l k  and 110) 
functions of both x and t and h is a slowly varying function of x and, following 
Whitham (1974), construct the average Lagrangian 9 as a function of a, k = 6,, 
w = - B t ,  and x (owing to the variation of h) for any assumed vertical variation of 
the velocity potential. The requirements that the action be stationary with respect to 
independent variations of the amplitude a and the phase 9 yields a dispersion relation 
of the form D(k, w ,  x) = 0 and the conservation equation 

dt+(c,d)z =%d = 0 (1 .11)  

for the wave action d = a 9 / a w .  Moreover, it follows from Noether’s theorem and 
the invariance of 3 under translation of t that the specific energy 8 = o d  is 
conserved (in the sense that it satisfies W 8  = 0). This energy proves to be equal to the 
wave energy d = h a 2  for the MSE, but 8 = F(Kh) d for Eckart’s approximation, 
where F varies from 1 a t  Kh = 0 through a minimum of 0.784 for K h  = 0.575 to 1 at 
Kh = 03. F may be factored out of the conservation equation for 8, and &’ is 
conserved, if h is constant, but Eckart’s approximation does not conserve &‘ for 
variable depth. It is this non-conservation that underlies Eckart’s (1951) erroneous 
approximation to the group velocity, which he obtained by dividing the energy flux 
(the vertical integral of the mean product of the hydrodynamic pressure and the 
velocity normal to the wave front) by the mean energy density 8; however, it should 
be emphasized that the role of wave action in this context was realized only with the 
later work of Whitham (1965), Bretherton & Garrett (1969), and Hayes (1970). 

I illustrate Eckart’s equation by applying it, in $4, to the reflection problem for a 
smooth, gently sloping beach of finite offshore depth (Eckart 1952 solves the 
corresponding problem for a uniform slope) and, in $5, to the edge-wave problem for 
uniform slope (not necessarily small). As suggested by the preceding comparison of 
KH and kX, Eckart’s equation is inferior to the MSE in its prediction of the 
amplitude in the reflection problem if the offshore depth is neither shallow nor deep, 
although both approximations agree with that of Friedrichs (1948) for the limiting 
case of small, uniform slope (infinite offshore depth). But Eckart’s equation is 
superior to the MSE for the prediction of the edge-wave eigenvalues in that it 
provides direct, analytical results that are exact for the dominant mode and in error 
by at  most 1.6% for all higher modes over the complete range of admissible slopes, 
whereas the MSE requires numerical integration and yields a result for the dominant 
mode that is in error for large slopes (Smith & Sprinks 1975). 
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2. Variational formulation (monochromatic motion) 
We choose the action integral for wave motion of period T = 2n/w as 

where 

T 

J = I. Ldt = T ( L ) ,  L = I p d z d y ,  

L^ = - Lh [#t + gz + ;(V#)'] dz 

(2 . la ,  b) 

is the Lagrangian density for gravity waves (Luke 1967) after factoring out the fluid 
density, q5 is the velocity potential, and 5 is the free-surface displacement. Remarking 
that q5 and 

(2.3a, b) 

in (2.2), neglect terms of fourth and higher order in @ and 2, and average over T to 
obtain 

must be in quadrature, we posit 

q5 = @(x, z )  cos wt, g = Z(x) sin wt 

2' ( L - b h ' )  = 20Z(@),,,-92~- (V@)2dz . @, 1 
Hamilton's principle requires J or, equivalently, ( L )  to be stationary with respect 

to independent variations of @ and 2, which implies the exact statement 

V 2 @ = 0  ( - h < z < O ) ,  

@ , = w Z ,  w @ = g Z  ( z = O )  

@,+Vh*V@ = 0 (Z = -h ) ,  

of the (linearized) gravity-wave problem. The solution of (2.5) and (2.7) is given by 
(Miles 1985) 

where the operator A2 is defined by (1.8). Substituting (2.8) into (2.6), we obtain (1.7). 
Variational approximations to (1.7) may be obtained by adopting approximations 

to (2.8) in (2.4) and invoking 6(L)/6Z = 0. Perhaps the simplest such approximation 
is @ = ( g / w )  2, which is independent of z and leads to Lamb's (1932) shallow-water 
equation (1.5). The deep-water solution of (2.5) and (2.7) suggests the approximation 

@ = ( g / w )  (cosh Az+ ~ 4 - l  sinh kz) 2, (2.8) 

@(x, 2) = ( g / w )  Z(x) elcz, (2.9) 

9 = ; ( g / W ) 2 H [ K 2 2 2 - -  (VZ)2],  (2.10) 

the substitution of which into (2.4) yields 

where H and K are defined by (1.2). Invoking S(L)/GZ = 0, we obtain Eckart's 
equation (1.1) and the boundary condition 

H n . V Z = O  (x on as), (2.1 1)  

where i3S is the contact line and n is the normal thereto. 
The dispersion relation implied by (1.1) for a straight-crested gravity wave of 

wavenumber k in water of uniform depth is given by k = K(w,  h )  (1.2b), which 
coincides with the exact dispersion relation (1.4 b) for either kh J O(K +. k2h) or 
kh f 03 ( K +  k) and differs therefrom by less than 4 %  for 0 < Kh < 03 (Eckart 1952, 
figure 2). It offers the advantage, vis-a-vis (1.4b), of giving k as an explicit function 
of w in those problems for which w is prescribed. 
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The ratio of group to phase velocities implied by k = K(w,  h )  for fixed h is 

which differs from the exact result implied by (1.4b), 

(2.12) 

(2.13) 

by less than 1% for 0 < Kh <a. 
The exact solution of (2.5)-(2.7) for uniform depth suggests the approximation 

(2.14) 

in which k = k ( x )  is determined by (1.4b) with h = h(x)  therein. Substituting (2.14) 
into (2.4) and invoking (1.4a, b ) ,  we obtain 

9 = ;(g/w)2S[kZZ2- (VZ)2]], 

which implies the MSE (1.3). 

(2.15) 

3. Slowly modulated wavetrain 
We now assume that h is a slowly varying function of x and, for simplicity, two- 

dimensional motion and, following Whitham (1974), consider a wavetrain of the form 

(3 . la ,  b) 

where k = BZ, w = -8t,  (3.2a, b)  
and a are (by hypothesis) slowly varying functions of x and t .  Substituting (3.1) into 
(2.2), averaging over 8, and neglecting O(a4) and the derivatives of a, h, k and w ,  we 
obtain 

q5 = (g/w) a&; k, w ,  h) sin 8, g = a cos 8, 

9 = 9(d ,  k, w ,  X) = D(k,  w ,  x) 8, (3.3) 

20 = 1 - K - ~  V2(z) + k”f(z)] dz, (3.4) 

and d = ha2 (3.5) 

L where 

is (we anticipate) the corresponding approximation to the mean specific energy. (The 
direct calculation of d from (3.1) yields d = $a2(1 + D ) ,  which reduces to (3.5) after 
invoking (3.8). ) 

6 9(&, k, w ,  x) dxdt = 0 

for the variations 68 and 68, with k and w defined 
equations 

The first of these yields the dispersion relation 

11 
The variational principle 

28 = 0, a, 9 w - a z 9 k  = 0. 

D(k,w,x) = 0. 

dt + (cg d)z = %Rd = 0, 

The second yields the conservation equation 

(3.6) 

by (3.2), implies the Euler 

(3.7a, 6) 

(3.8) 

(3.9) 
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where 

is the specific wave action, and 
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d = 2" = Dud (3.10) 

is the group velocity. The solution of (3.9)-(3.11) is given by 

(3.11) 

(3.12) 

wherein cg and Dk ultimately may be expressed as functions of x, the factor K-' 

anticipates the form of the subsequent results, and 9 is determined by the initial 
conditions. 

The Euler equations (3.7) may be augmented by 

a, ( w 2 w - ~ ) - a 2 ( w ~ k )  = 0, (3.13) 

which follows from Noether's theorem and the invariance of 2 under an arbitrary 
translation oft. Invoking (3.8), (3.10) and (3.11), we reduce (3.13) to V 6  = 0, where 

d = u 2 " - 2  = w 2 "  = w d  (3.14) 

is an energy that may be identified as the Hamiltonian density and reduces to d if 
and only if D, = l/w. 

1 

The vertical-distribution and dispersion functions for the MSE are 

cosh k(z + h)  , D = '(1-ktanh 2 K  kh).  
= cosh kh 

(3.15a, b)  

Substituting (3.15b) into (3.12) and invoking (3.8), (3.11) and (3.14), we obtain 

(3.16) 

where kH is given by (1.10 a) .  
The counterparts of (3.15a, b )  and (3.16) for Eckart's equation are 

f= eKZ, D = $- 'H(K2-k2) ,  (3.17a, b )  

and (3.18) 

where KH is given by (1.9). But, instead of 6 = 6, as in (3.16), 

6 = w d  = F(Kh) 8, (3.19) 

where F ( K ~ )  = 1 + e-2Kh - 2 ~ h ( e ~ " ~  - i)-l (3.20) 

varies from 1 a t  ~h = 0 through a minimum of 0.784 at K = 0.575 to 1 at  ~h = co. It 
follows that Vd $: 0, and d is not conserved, in Eckart's approximation for variable 
depth. 

4. Reflection from a gently sloping beach 
We consider oblique reflection from a gently sloping beach for which 

h(x)&o-x ( X / l . 1 0 ) ,  h ( 4  h, (xl l1'  a), (4.1 a, b )  
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where a << 1 is the shoreline (x = 0) slope, h, is the offshore depth, and I = O(h,/a) 
is a characteristic length for the beach ( I  = 00 and h = ax for a beach of uniform 
slope). Posing 

( 4 . 2 ~ )  - Aa, cos [ ( K 2 , - k i ) f x + $ ]  cos (w t -k*y )  ( K , x f  m), (4.2b) 

where a, is the shoreline amplitude, k, is the longshore wavenumber, K ,  is given by 
(1 .2b )  with h = h, therein, and A and $ are to  be determined, we reduce (1.1) to 

{ ( x ,  y ,  t )  = a,j(x) cos (w t -k*y )  (0 < x < 00, - 00 y < co) 

(Hf')' + (K2- h i )  Hf = 0. (4.3) 

The normalization implicit in (4.2) and the boundary condition (2 .11)  imply 

f = 1 ,  H f ' = O  ( x = O ) .  (4.4a, b )  

The solution of (4.3) and (4.4) is given by (cf. Miles 1990) 

(4.5a, b )  

Letting x f  00 in ( 4 . 5 ~ )  and equating the asymptotic approximation to (4 .2b ) ,  we 
obtain 

( 4 . 6 ~ )  

and $ = r r ( [ c o t h  Kh--0th Kh, sin2 0,];-(coth ~h,)f  cos 0,}dx-& (4.6b) 

where 8, = sin-'(k,/k,) is the angle of incidence. The amplitude A reduces to 
( 2 a / x  cos 0,)i for a uniformly sloping beach (h, = 0 ) ,  in agreement with the 
matched-asymptotic solution of (2.5)-(2.7) (Miles 1990) ; it differs therefrom by at 
most 9% for 0 < Kh, < 00. 

The corresponding approximations based on the MSE are obtained by replacing H 
and K by .@ and k in (4.23)-(4.5), and the results for A and @ are identical with those 
of the matched-asymptotic solution of (2 .5)-(2.7) .  

0 

5. Edge waves 
The boundary-value problem described by (4.1)-(4.4) also admits a discrete set of 

eigensolutions for which the reflection condition (4.5) is replaced by the null 
condition 

f-.O (zt00). (5.1) 

The eigensolutions of (4.3), (4.4), and (5.1) for h = a x  are given by (Eckart 1951) 

(5 .2a ,  b )  f ( x )  = PI( --n, 2 a + n +  1 ; 1 ; 1 -t), 6 = e-2Kuz, 

where .#', is a hypergeometric (Jacobi) polynomial, 

1 - 2 n ( n +  1) a2 
2(2n + I)  a2 

a =  (n = 0 , l )  ... , N ) ,  (5.3) 

(2n+ 1)  sin 6 
- (0 = tan-' a), (5.4) K (2n+  1) a _ -  - 

K* [l +a2+4n2(n+ 1)2a4]a - [1 +4n2(n+ 1)' sin2 0 tan2 01; 
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and N is the largest integer for which a > 0. We remark that (5.4) reduces to 
K/k, = sin 8 for n = 0, in agreement with Stokes (1846), and to  K/k, = (2n+ I )  fl 
in the limit u 4 0, in agreement with shallow-water theory (Eckart 1951). The exact 
result is (Ursell 1952) 

K/k, = sin (2n+ 1) 8 (n = 0,1,  ... , N ) ,  (5.5) 

where N is the largest integer for which (2n+ 1) 8 < in. The maximum error in (5.4), 
vis-h-vis (5.5), is 1.6% and occurs for u = & and n = N = 1.  

Smith & Sprinks (1975) report numerical approximations to K/k*, based on the 
numerical integration of the MSE, for n = 0 and 1. Their result for n = 1 is 
graphically indistinguishable from (5.5) (as also is true for (5.4)), but their result for 
n = 0 departs significantly from (4.5) for G 2 1, whereas (5.4) is exact for n = 0. 
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